Tag Archives: atlas

So What Is It???

So What Is It? That’s the question one hears in all the bars and on all the street corners and on every Twitter feed and in the whispering of the wind. Everybody wants to know. That bump seen on the ATLAS and CMS two-photon plots! What… IS… it…?


The two-photon results from ATLAS (top) and CMS (bottom) aligned, so that the 600, 700 and 800 GeV locations (blue vertical lines) line up almost perfectly. The peaks in the two data sets are in about the same location. ATLAS’s is larger and also wider. Click here for more commentary.

Well, to be honest, probably it’s just that: a bump on a plot. But just in case it’s not — just in case it really is the sign of a new particle in Large Hadron Collider [LHC] data — let me (start to) address the question.

First: what it isn’t. It can’t just be a second Higgs particle (a heavier version of the one found in 2012) that is just appended to the known particles, with no other particles added in.   Continue reading

Exciting Day Ahead at LHC

At CERN, the laboratory that hosts the Large Hadron Collider [LHC]. Four years ago, almost to the day. Fabiola Gianotti, spokesperson for the ATLAS experiment, delivered the first talk in a presentation on 2011 LHC data. Speaking to the assembled scientists and dignitaries, she presented the message that energized the physics community: a little bump had shown up on a plot. Continue reading

First Big Results from LHC at 13 TeV

A few weeks ago, the Large Hadron Collider [LHC] ended its 2015 data taking of 13 TeV proton-proton collisions.  This month we’re getting our first look at the data.

Already the ATLAS experiment has put out two results which are a significant and impressive contribution to human knowledge.  CMS has one as well (sorry to have overlooked it the first time, but it isn’t posted on the usual Twiki page for some reason.) Continue reading

LHC Starts Collisions; and a Radio Interview Tonight

In the long and careful process of restarting the Large Hadron Collider [LHC] after its two-year nap for upgrades and repairs, another milestone has been reached: protons have once again collided inside the LHC’s experimental detectors (named ATLAS, CMS, LHCb and ALICE). This is good news, but don’t get excited yet. It’s just one small step. These are collisions at the lowest energy at which the LHC operates (450 GeV per proton, to be compared with the 4000 GeV per proton in 2012 and the 6500 GeV per proton they’ve already achieved in the last month, though in non-colliding beams.) Also the number of protons in the beams, and the number of collisions per second, is still very, very small compared to what will be needed. So discoveries are not imminent!  Yesterday’s milestone was just one of the many little tests that are made to assure that the LHC is properly set up and ready for the first full-energy collisions, which should start in about a month.

But since full-energy collisions are on the horizon, why not listen to a radio show about what the LHC will be doing after its restart is complete? Today (Wednesday May 6th), Virtually Speaking Science, on which I have appeared a couple of times before, will run a program at 5 pm Pacific time (8 pm Eastern). Science writer Alan Boyle will be interviewing me about the LHC’s plans for the next few months and the coming years. You can listen live, or listen later once they post it.  Here’s the link for the program.

More on Dark Matter and the Large Hadron Collider

As promised in my last post, I’ve now written the answer to the second of the three questions I posed about how the Large Hadron Collider [LHC] can search for dark matter.  You can read the answers to the first two questions here. The first question was about how scientists can possibly look for something that passes through a detector without leaving any trace!  The second question is how scientists can tell the difference between ordinary production of neutrinos — which also leave no trace — and production of something else. [The answer to the third question — how one could determine this “something else” really is what makes up dark matter — will be added to the article later this week.]

In the meantime, after Monday’s post, I got a number of interesting questions about dark matter, why most experts are confident it exists, etc.  There are many reasons to be confident; it’s not just one argument, but a set of interlocking arguments.  One of the most powerful comes from simulations of the universe’s history.  These simulations

  • start with what we think we know about the early universe from the cosmic microwave background [CMB], including the amount of ordinary and dark matter inferred from the CMB (assuming Einstein’s gravity theory is right), and also including the degree of non-uniformity of the local temperature and density;
  • and use equations for known physics, including Einstein’s gravity, the behavior of gas and dust when compressed and heated, the effects of various forms of electromagnetic radiation on matter, etc.

The output of the these simulations is a prediction for the universe today — and indeed, it roughly has the properties of the one we inhabit.

Here’s a video from the Illustris collaboration, which has done the most detailed simulation of the universe so far.  Note the age of the universe listed at the bottom as the video proceeds.  On the left side of the video you see dark matter.  It quickly clumps under the force of gravity, forming a wispy, filamentary structure with dense knots, which then becomes rather stable; moderately dense regions are blue, highly dense regions are pink.  On the right side is shown gas.  You see that after the dark matter structure begins to form, that structure attracts gas, also through gravity, which then forms galaxies (blue knots) around the dense knots of dark matter.  The galaxies then form black holes with energetic disks and jets, and stars, many of which explode.   These much more complicated astrophysical effects blow clouds of heated gas (red) into intergalactic space.

Meanwhile, the distribution of galaxies in the real universe, as measured by astronomers, is illustrated in this video from the Sloan Digital Sky Survey.   You can see by eye that the galaxies in our universe show a filamentary structure, with big nearly-empty spaces, and loose strings of galaxies ending in big clusters.  That’s consistent with what is seen in the Illustris simulation.

Now if you’d like to drop the dark matter idea, the question you have to ask is this: could the simulations still give a universe similar to ours if you took dark matter out and instead modified Einstein’s gravity somehow?  [Usually this type of change goes under the name of MOND.]

In the simulation, gravity causes the dark matter, which is “cold” (cosmo-speak for “made from objects traveling much slower than light speed”), to form filamentary structures that then serve as the seeds for gas to clump and form galaxies.  So if you want to take the dark matter out, and instead change gravity to explain other features that are normally explained by dark matter, you have a challenge.   You are in danger of not creating the filamentary structure seen in our universe.  Somehow your change in the equations for gravity has to cause the gas to form galaxies along filaments, and do so in the time allotted.  Otherwise it won’t lead to the type of universe that we actually live in.

Challenging, yes.  Challenging is not the same as impossible. But everyone one should understand that the arguments in favor of dark matter are by no means limited to the questions of how stars move in galaxies and how galaxies move in galaxy clusters.  Any implementation of MOND has to explain a lot of other things that, in most experts’ eyes, are efficiently taken care of by cold dark matter.

Dark Matter: How Could the Large Hadron Collider Discover It?

Dark Matter. Its existence is still not 100% certain, but if it exists, it is exceedingly dark, both in the usual sense — it doesn’t emit light or reflect light or scatter light — and in a more general sense — it doesn’t interact much, in any way, with ordinary stuff, like tables or floors or planets or  humans. So not only is it invisible (air is too, after all, so that’s not so remarkable), it’s actually extremely difficult to detect, even with the best scientific instruments. How difficult? We don’t even know, but certainly more difficult than neutrinos, the most elusive of the known particles. The only way we’ve been able to detect dark matter so far is through the pull it exerts via gravity, which is big only because there’s so much dark matter out there, and because it has slow but inexorable and remarkable effects on things that we can see, such as stars, interstellar gas, and even light itself.

About a week ago, the mainstream press was reporting, inaccurately, that the leading aim of the Large Hadron Collider [LHC], after its two-year upgrade, is to discover dark matter. [By the way, on Friday the LHC operators made the first beams with energy-per-proton of 6.5 TeV, a new record and a major milestone in the LHC’s restart.]  There are many problems with such a statement, as I commented in my last post, but let’s leave all that aside today… because it is true that the LHC can look for dark matter.   How?

When people suggest that the LHC can discover dark matter, they are implicitly assuming

  • that dark matter exists (very likely, but perhaps still with some loopholes),
  • that dark matter is made from particles (which isn’t established yet) and
  • that dark matter particles can be commonly produced by the LHC’s proton-proton collisions (which need not be the case).

You can question these assumptions, but let’s accept them for now.  The question for today is this: since dark matter barely interacts with ordinary matter, how can scientists at an LHC experiment like ATLAS or CMS, which is made from ordinary matter of course, have any hope of figuring out that they’ve made dark matter particles?  What would have to happen before we could see a BBC or New York Times headline that reads, “Large Hadron Collider Scientists Claim Discovery of Dark Matter”?

Well, to address this issue, I’m writing an article in three stages. Each stage answers one of the following questions:

  1. How can scientists working at ATLAS or CMS be confident that an LHC proton-proton collision has produced an undetected particle — whether this be simply a neutrino or something unfamiliar?
  2. How can ATLAS or CMS scientists tell whether they are making something new and Nobel-Prizeworthy, such as dark matter particles, as opposed to making neutrinos, which they do every day, many times a second?
  3. How can we be sure, if ATLAS or CMS discovers they are making undetected particles through a new and unknown process, that they are actually making dark matter particles?

My answer to the first question is finished; you can read it now if you like.  The second and third answers will be posted later during the week.

But if you’re impatient, here are highly compressed versions of the answers, in a form which is accurate, but admittedly not very clear or precise.

  1. Dark matter particles, like neutrinos, would not be observed directly. Instead their presence would be indirectly inferred, by observing the behavior of other particles that are produced alongside them.
  2. It is impossible to directly distinguish dark matter particles from neutrinos or from any other new, equally undetectable particle. But the equations used to describe the known elementary particles (the “Standard Model”) predict how often neutrinos are produced at the LHC. If the number of neutrino-like objects is larger that the predictions, that will mean something new is being produced.
  3. To confirm that dark matter is made from LHC’s new undetectable particles will require many steps and possibly many decades. Detailed study of LHC data can allow properties of the new particles to be inferred. Then, if other types of experiments (e.g. LUX or COGENT or Fermi) detect dark matter itself, they can check whether it shares the same properties as LHC’s new particles. Only then can we know if LHC discovered dark matter.

I realize these brief answers are cryptic at best, so if you want to learn more, please check out my new article.

How a Trigger Can Potentially Make or Break an LHC Discovery

Triggering is an essential part of the Large Hadron Collider [LHC]; there are so many collisions happening each second at the LHC, compared to the number that the experiments can afford to store for later study, that the data about most of the collisions (99.999%) have to be thrown away immediately, completely and permanently within a second after the collisions occur.  The automated filter, partly hardware and partly software, that is programmed to make the decision as to what to keep and what to discard is called “the trigger”.  This all sounds crazy, but it’s necessary, and it works.   Usually.

Let me give you one very simple example of how things can go wrong, and how the ATLAS and CMS experiments [the two general purpose experiments at the LHC] attempted to address the problem.  Before you read this, you may want to read my last post, which gives an overview of what I’ll be talking about in this one.

Click here to read the rest of the article…

Final Days of Busy Visit to CERN

I’m a few days behind (thanks to an NSF grant proposal that had to be finished last week) but I wanted to write a bit more about my visit to CERN, which concluded Nov. 21st in a whirlwind of activity. I was working full tilt on timely issues related to Run 2 of the Large Hadron Collider [LHC], currently scheduled to start early next May.   (You may recall the LHC has been shut down for repairs and upgrades since the end of 2012.)

A certain fraction of my time for the last decade has been taken up by concerns about the LHC experiments’ ability to observe new long-lived particles, specifically ones that aren’t affected by the electromagnetic or strong nuclear forces. (Long-lived particles that are affected by those forces are easier to search for, and are much more constrained by the LHC experiments.  More about them some other time.)

This subject is important to me because it is a classic example of how the trigger systems at LHC experiments could fail us — whereby a spectacular signal of a new phenomena could be discarded and lost in the very process of taking and storing the data! If no one thinks carefully about the challenges of finding long-lived particles in advance of running the LHC, we can end up losing a huge opportunity, unnecessarily. Fortunately some of us are thinking about it, but we are small in number. It is an uphill battle for those experimenters within ATLAS and CMS [the two general purpose experiments at the LHC] who are working hard to make sure they have the required triggers available. I can’t tell you how many times people within the experiments — even at the Naturalness conference I wrote about recently — have told me “such efforts are hopeless”… despite the fact that their own experiments have actually shown, already in public and in some cases published measurements (including this, this, this, this, this, and this), that it is not. Conversely, many completely practical searches for long-lived particles have not been carried out, often because there was no trigger strategy able to capture them, or because, despite the events having been recorded, no one at ATLAS or CMS has had time or energy to actually search through their data for this signal.

Now what is meant by “long-lived particles”? Continue reading