Category Archives: Particle Physics

Which Parts of the Big Bang Theory are Reliable, and Why?

Familiar throughout our international culture, the “Big Bang” is well-known as the theory that scientists use to describe and explain the history of the universe. But the theory is not a single conceptual unit, and there are parts that are more reliable than others.

It’s important to understand that the theory — a set of equations describing how the universe (more precisely, the observable patch of our universe, which may be a tiny fraction of the universe) changes over time, and leading to sometimes precise predictions for what should, if the theory is right, be observed by humans in the sky — actually consists of different periods, some of which are far more speculative than others.  In the more speculative early periods, we must use equations in which we have limited confidence at best; moreover, data relevant to these periods, from observations of the cosmos and from particle physics experiments, is slim to none. In more recent periods, our confidence is very, very strong.

In my “History of the Universe” article [see also my related articles on cosmic inflation, on the Hot Big Bang, and on the pre-inflation period; also a comment that the Big Bang is an expansion, not an explosion!], the following figure appears, though without the colored zones, which I’ve added for this post. The colored zones emphasize what we know, what we suspect, and what we don’t know at all.

History of the Universe, taken from my article with the same title, with added color-coded measures of how confident we can be in its accuracy.  In each colored zone, the degree of confidence and the observational/experimental source of that confidence is indicated. Three different possible starting points for the "Big Bang" are noted at the bottom; different scientists may mean different things by the term.

History of the Universe, taken from my article with the same title, with added color-coded measures of how confident we can be in our understanding. In each colored zone, the degree of confidence and the observational/experimental source of that confidence is indicated. Three different possible starting points for the “Big Bang” are noted at the bottom; note that individual scientists may mean different things by the term.

Notice that in the figure, I don’t measure time from the start of the universe.  That’s because I don’t know how or when the universe started (and in particular, the notion that it started from a singularity, or worse, an exploding “cosmic egg”, is simply an over-extrapolation to the past and a misunderstanding of what the theory actually says.) Instead I measure time from the start of the Hot Big Bang in the observable patch of the universe.  I also don’t even know precisely when the Hot Big Bang started, but the uncertainty on that initial time (relative to other events) is less than one second — so all the times I’ll mention, which are much longer than that, aren’t affected by this uncertainty.

I’ll now take you through the different confidence zones of the Big Bang, from the latest to the earliest, as indicated in the figure above.

Continue reading

If It Holds Up, What Might BICEP2′s Discovery Mean?

Well, yesterday was quite a day, and I’m still sifting through the consequences.

First things first.  As with all major claims of discovery, considerable caution is advised until the BICEP2 measurement has been verified by some other experiment.   Moreover, even if the measurement is correct, one should not assume that the interpretation in terms of gravitational waves and inflation is correct; this requires more study and further confirmation.

The media is assuming BICEP2′s measurement is correct, and that the interpretation in terms of inflation is correct, but leading scientists are not so quick to rush to judgment, and are thinking things through carefully.  Scientists are cautious not just because they’re trained to be thoughtful and careful but also because they’ve seen many claims of discovery withdrawn or discredited; discoveries are made when humans go where no one has previously gone, with technology that no one has previously used — and surprises, mistakes, and misinterpretations happen often.

But in this post, I’m going to assume assume assume that BICEP2′s results are correct, or essentially correct, and are being correctly interpreted.  Let’s assume that [here's a primer on yesterday's result that defines these terms]

  • they really have detected “B-mode polarization” in the “CMB” [Cosmic Microwave Background, the photons (particles of light) that are the ancient, cool glow leftover from the Hot Big Bang]
  • that this B-mode polarization really is a sign of gravitational waves generated during a brief but dramatic period of cosmic inflation that immediately preceded the Hot Big Bang,

Then — IF BICEP2′s results were basically right and were being correctly interpreted concerning inflation — what would be the implications?

Well… Wow…  They’d really be quite amazing. Continue reading

My New Articles on Big Bang, Inflation, Etc.

I haven’t written in detail about the history of the universe before, but with an important announcement coming up today, it was clearly time I do so.

Let’s start from the beginning. How did the universe begin?

You may have heard that “the Big Bang theory says that the universe began with a giant explosion.” THIS IS FALSE. That’s not what the original Big Bang Theory said, and it’s certainly not what the modern form of the Big Bang Theory says. The Big Bang is not like a Big Bomb. It’s not an explosion. It’s not like a seed exploding or expanding into empty space. It’s an expansion of space itself — space that was already large. And in the modern theory of the Big Bang, the hot, dense, cooling universe that people think of as the Big Bang wasn’t even the beginning.

How did the universe begin? We haven’t the faintest idea.

That’s right; we don’t know. And that’s not surprising; we can trace the history back a long way, an amazingly long way, but at some point, what we know, or even what we can make educated guesses about, drops to zero.

Unfortunately, in books, on websites, and on many TV programs, there are many, many, many, many, many descriptions of the universe that say that the Big Bang was the beginning of the universe — that the universe started with a singularity (one which they incorrectly draw as a point in space, rather than a moment in time) — and that we know everything (or can guess everything) that happened after the beginning of the universe. Many of them even explicitly say that the Big Bang was an explosion, or they illustrate it that way — as in, for instance, Stephen Hawking’s TV special on the universe. [Sigh --- How are scientists supposed to explain these ideas correctly to the public when Stephen Hawking's own TV program shows a completely misleading video?!] This is just not true, as any serious expert will tell you.

So what do we actually know? or at least suspect?

Out of the fog of our ignorance comes the strong suspicion — not yet the certainty — that at some point in the distant past (about 13.7 billion years ago) the part of the universe that we can currently observe (let’s call it “the observable patch” of the universe) was subjected to an extraordinary event, called “inflation”.

We suspect it. We have some considerable evidence. We’re looking for more evidence. We might learn more about this any day now. Maybe today’s our day.

Stay tuned for the announcement of a “Major Discovery” out of the Harvard-Smithsonian Center for Astrophysics later today.  And then stay further tuned for the community’s interpretation of its reliability.

Getting Ready for the Cosmic News

As many of you know already, we’re expecting some very significant news Monday, presumably from the BICEP2 experiment.  The rumors seem to concern a possible observation of “B-mode polarization in the cosmic microwave background radiation”, which, to the person on the street, could mean:

It would also be cool for at least one other reason: it would be yet another indirect detection of gravitational waves, which are predicted in Einstein’s theory of gravity (but not Newton’s), just as electromagnetic waves were predicted by Maxwell’s theory of electricity and magnetism.  Note, however, it would not be the first such indirect detection; that honor belongs to this Nobel-Prize-winning measurement of the behavior of a pair of neutron stars which orbit each other, one of which is a pulsar.  (Attempts at direct detection are underway at LIGO.)

Of course, it’s possible the rumors aren’t correct, and that the implications will be completely different from what people currently expect.  But the press release announcing the Monday press conference specifically said “significant discovery”, so at least it will be interesting, one way or the other.

If you have no idea, or a limited idea, of what I just said, or if you’re not sure you have all the issues straight about the universe’s history and what “Big Bang” means, fear not: I have written the History of the Universe, designed for the non-expert.  Well, not all of the history, or all of the universe either, but the parts you’re going to want to know about for Monday’s announcement.  Those of you who are still awake are invited to read what I’ve put together and send comments about the parts that are unclear or any aspects that look incorrect.  I’ll have another post in the morning hours, and then the big announcement takes place just after noon, East Coast time.

What if the Large Hadron Collider Finds Nothing Else?

In my last post, I expressed the view that a particle accelerator with proton-proton collisions of (roughly) 100 TeV of energy, significantly more powerful than the currently operational Large Hadron Collider [LHC] that helped scientists discover the Higgs particle, is an obvious and important next steps in our process of learning about the elementary workings of nature. And I described how we don’t yet know whether it will be an exploratory machine or a machine with a clear scientific target; it will depend on what the LHC does or does not discover over the coming few years.

What will it mean, for the 100 TeV collider project and more generally, if the LHC, having made possible the discovery of the Higgs particle, provides us with no more clues?  Specifically, over the next few years, hundreds of tests of the Standard Model (the equations that govern the known particles and forces) will be carried out in measurements made by the ATLAS, CMS and LHCb experiments at the LHC. Suppose that, as it has so far, the Standard Model passes every test that the experiments carry out? In particular, suppose the Higgs particle discovered in 2012 appears, after a few more years of intensive study, to be, as far the LHC can reveal, a Standard Model Higgs — the simplest possible type of Higgs particle?

Before we go any further, let’s keep in mind that we already know that the Standard Model isn’t all there is to nature. The Standard Model does not provide a consistent theory of gravity, nor does it explain neutrino masses, dark matter or “dark energy” (also known as the cosmological constant). Moreover, many of its features are just things we have to accept without explanation, such as the strengths of the forces, the existence of “three generations” (i.e., that there are two heavier cousins of the electron, two for the up quark and two for the down quark), the values of the masses of the various particles, etc. However, even though the Standard Model has its limitations, it is possible that everything that can actually be measured at the LHC — which cannot measure neutrino masses or directly observe dark matter or dark energy — will be well-described by the Standard Model. What if this is the case?

Michelson and Morley, and What They Discovered

In science, giving strong evidence that something isn’t there can be as important as discovering something that is there — and it’s often harder to do, because you have to thoroughly exclude all possibilities. [It's very hard to show that your lost keys are nowhere in the house --- you have to convince yourself that you looked everywhere.] A famous example is the case of Albert Michelson, in his two experiments (one in 1881, a second with Edward Morley in 1887) trying to detect the “ether wind”.

Light had been shown to be a wave in the 1800s; and like all waves known at the time, it was assumed to be a wave in something material, just as sound waves are waves in air, and ocean waves are waves in water. This material was termed the “luminiferous ether”. As we can detect our motion through air or through water in various ways, it seemed that it should be possible to detect our motion through the ether, specifically by looking for the possibility that light traveling in different directions travels at slightly different speeds.  This is what Michelson and Morley were trying to do: detect the movement of the Earth through the luminiferous ether.

Both of Michelson’s measurements failed to detect any ether wind, and did so expertly and convincingly. And for the convincing method that he invented — an experimental device called an interferometer, which had many other uses too — Michelson won the Nobel Prize in 1907. Meanwhile the failure to detect the ether drove both FitzGerald and Lorentz to consider radical new ideas about how matter might be deformed as it moves through the ether. Although these ideas weren’t right, they were important steps that Einstein was able to re-purpose, even more radically, in his 1905 equations of special relativity.

In Michelson’s case, the failure to discover the ether was itself a discovery, recognized only in retrospect: a discovery that the ether did not exist. (Or, if you’d like to say that it does exist, which some people do, then what was discovered is that the ether is utterly unlike any normal material substance in which waves are observed; no matter how fast or in what direction you are moving relative to me, both of us are at rest relative to the ether.) So one must not be too quick to assume that a lack of discovery is actually a step backwards; it may actually be a huge step forward.

Epicycles or a Revolution?

There were various attempts to make sense of Michelson and Morley’s experiment.   Some interpretations involved  tweaks of the notion of the ether.  Tweaks of this type, in which some original idea (here, the ether) is retained, but adjusted somehow to explain the data, are often referred to as “epicycles” by scientists.   (This is analogous to the way an epicycle was used by Ptolemy to explain the complex motions of the planets in the sky, in order to retain an earth-centered universe; the sun-centered solar system requires no such epicycles.) A tweak of this sort could have been the right direction to explain Michelson and Morley’s data, but as it turned out, it was not. Instead, the non-detection of the ether wind required something more dramatic — for it turned out that waves of light, though at first glance very similar to other types of waves, were in fact extraordinarily different. There simply was no ether wind for Michelson and Morley to detect.

If the LHC discovers nothing beyond the Standard Model, we will face what I see as a similar mystery.  As I explained here, the Standard Model, with no other particles added to it, is a consistent but extraordinarily “unnatural” (i.e. extremely non-generic) example of a quantum field theory.  This is a big deal. Just as nineteenth-century physicists deeply understood both the theory of waves and many specific examples of waves in nature  and had excellent reasons to expect a detectable ether, twenty-first century physicists understand quantum field theory and naturalness both from the theoretical point of view and from many examples in nature, and have very good reasons to expect particle physics to be described by a natural theory.  (Our examples come both from condensed matter physics [e.g. metals, magnets, fluids, etc.] and from particle physics [e.g. the physics of hadrons].) Extremely unnatural systems — that is, physical systems described by quantum field theories that are highly non-generic — simply have not previously turned up in nature… which is just as we would expect from our theoretical understanding.

[Experts: As I emphasized in my Santa Barbara talk last week, appealing to anthropic arguments about the hierarchy between gravity and the other forces does not allow you to escape from the naturalness problem.]

So what might it mean if an unnatural quantum field theory describes all of the measurements at the LHC? It may mean that our understanding of particle physics requires an epicyclic change — a tweak.  The implications of a tweak would potentially be minor. A tweak might only require us to keep doing what we’re doing, exploring in the same direction but a little further, working a little harder — i.e. to keep colliding protons together, but go up in collision energy a bit more, from the LHC to the 100 TeV collider. For instance, perhaps the Standard Model is supplemented by additional particles that, rather than having masses that put them within reach of the LHC, as would inevitably be the case in a natural extension of the Standard Model (here’s an example), are just a little bit heavier than expected. In this case the world would be somewhat unnatural, but not too much, perhaps through some relatively minor accident of nature; and a 100 TeV collider would have enough energy per collision to discover and reveal the nature of these particles.

Or perhaps a tweak is entirely the wrong idea, and instead our understanding is fundamentally amiss. Perhaps another Einstein will be needed to radically reshape the way we think about what we know.  A dramatic rethink is both more exciting and more disturbing. It was an intellectual challenge for 19th century physicists to imagine, from the result of the Michelson-Morley experiment, that key clues to its explanation would be found in seeking violations of Newton’s equations for how energy and momentum depend on velocity. (The first experiments on this issue were carried out in 1901, but definitive experiments took another 15 years.) It was an even greater challenge to envision that the already-known unexplained shift in the orbit of Mercury would also be related to the Michelson-Morley (non)-discovery, as Einstein, in trying to adjust Newton’s gravity to make it consistent with the theory of special relativity, showed in 1913.

My point is that the experiments that were needed to properly interpret Michelson-Morley’s result

  • did not involve trying to detect motion through the ether,
  • did not involve building even more powerful and accurate interferometers,
  • and were not immediately obvious to the practitioners in 1888.

This should give us pause. We might, if we continue as we are, be heading in the wrong direction.

Difficult as it is to do, we have to take seriously the possibility that if (and remember this is still a very big “if”) the LHC finds only what is predicted by the Standard Model, the reason may involve a significant reorganization of our knowledge, perhaps even as great as relativity’s re-making of our concepts of space and time. Were that the case, it is possible that higher-energy colliders would tell us nothing, and give us no clues at all. An exploratory 100 TeV collider is not guaranteed to reveal secrets of nature, any more than a better version of Michelson-Morley’s interferometer would have been guaranteed to do so. It may be that a completely different direction of exploration, including directions that currently would seem silly or pointless, will be necessary.

This is not to say that a 100 TeV collider isn’t needed!  It might be that all we need is a tweak of our current understanding, and then such a machine is exactly what we need, and will be the only way to resolve the current mysteries.  Or it might be that the 100 TeV machine is just what we need to learn something revolutionary.  But we also need to be looking for other lines of investigation, perhaps ones that today would sound unrelated to particle physics, or even unrelated to any known fundamental question about nature.

Let me provide one example from recent history — one which did not lead to a discovery, but still illustrates that this is not all about 19th century history.

An Example

One of the great contributions to science of Nima Arkani-Hamed, Savas Dimopoulos and Gia Dvali was to observe (in a 1998 paper I’ll refer to as ADD, after the authors’ initials) that no one had ever excluded the possibility that we, and all the particles from which we’re made, can move around freely in three spatial dimensions, but are stuck (as it were) as though to the corner edge of a thin rod — a rod as much as one millimeter wide, into which only gravitational fields (but not, for example, electric fields or magnetic fields) may penetrate.  Moreover, they emphasized that the presence of these extra dimensions might explain why gravity is so much weaker than the other known forces.

Fig. 1: ADD's paper pointed out that no experiment as of 1998 could yet rule out the possibility that our familiar three dimensional world is a corner of a five-dimensional world, where the two extra dimensions are finite but perhaps as large as a millimeter.

Fig. 1: ADD’s paper pointed out that no experiment as of 1998 could yet rule out the possibility that our familiar three-dimensional world is a corner of a five-dimensional world, where the two extra dimensions are finite but perhaps as large as a millimeter.

Given the incredible number of experiments over the past two centuries that have probed distances vastly smaller than a millimeter, the claim that there could exist millimeter-sized unknown dimensions was amazing, and came as a tremendous shock — certainly to me. At first, I simply didn’t believe that the ADD paper could be right.  But it was.

One of the most important immediate effects of the ADD paper was to generate a strong motivation for a new class of experiments that could be done, rather inexpensively, on the top of a table. If the world were as they imagined it might be, then Newton’s (and Einstein’s) law for gravity, which states that the force between two stationary objects depends on the distance r between them as 1/r², would increase faster than this at distances shorter than the width of the rod in Figure 1.  This is illustrated in Figure 2.

Fig. 2: If the world were as sketched in Figure 1, then Newton/Einstein's law of gravity would be violated at distances shorter than the width of the rod in Figure 1.  The blue line shows Newton/Einstein's prediction; the red line shows what a universe like that in Figure 1 would predict instead.  Experiments done in the last few years agree with the blue curve down to a small fraction of a millimeter.

Fig. 2: If the world were as sketched in Figure 1, then Newton/Einstein’s law of gravity would be violated at distances shorter than the width of the rod in Figure 1. The blue line shows Newton/Einstein’s prediction; the red line shows what a universe like that in Figure 1 would predict instead. Experiments done in the last few years agree with the blue curve down to a small fraction of a millimeter.

These experiments are not easy — gravity is very, very weak compared to electrical forces, and lots of electrical effects can show up at very short distances and have to be cleverly avoided. But some of the best experimentalists in the world figured out how to do it (see here and here). After the experiments were done, Newton/Einstein’s law was verified down to a few hundredths of a millimeter.  If we live on the corner of a rod, as in Figure 1, it’s much, much smaller than a millimeter in width.

But it could have been true. And if it had, it might not have been discovered by a huge particle accelerator. It might have been discovered in these small inexpensive experiments that could have been performed years earlier. The experiments weren’t carried out earlier mainly because no one had pointed out quite how important they could be.

Ok Fine; What Other Experiments Should We Do?

So what are the non-obvious experiments we should be doing now or in the near future?  Well, if I had a really good suggestion for a new class of experiments, I would tell you — or rather, I would write about it in a scientific paper. (Actually, I do know of an important class of measurements, and I have written a scientific paper about them; but these are measurements to be done at the LHC, and don’t involve a entirely new experiment.)  Although I’m thinking about these things, I do not yet have any good ideas.  Until I do, or someone else does, this is all just talk — and talk does not impress physicists.

Indeed, you might object that my remarks in this post have been almost without content, and possibly without merit.  I agree with that objection.

Still, I have some reasons for making these points. In part, I want to highlight, for a wide audience, the possible historic importance of what might now be happening in particle physics. And I especially want to draw the attention of young people. There have been experts in my field who have written that non-discoveries at the LHC constitute a “nightmare scenario” for particle physics… that there might be nothing for particle physicists to do for a long time. But I want to point out that on the contrary, not only may it not be a nightmare, it might actually represent an extraordinary opportunity. Not discovering the ether opened people’s minds, and eventually opened the door for Einstein to walk through. And if the LHC shows us that particle physics is not described by a natural quantum field theory, it may, similarly, open the door for a young person to show us that our understanding of quantum field theory and naturalness, while as intelligent and sensible and precise as the 19th century understanding of waves, does not apply unaltered to particle physics, and must be significantly revised.

Of course the LHC is still a young machine, and it may still permit additional major discoveries, rendering everything I’ve said here moot. But young people entering the field, or soon to enter it, should not assume that the experts necessarily understand where the field’s future lies. Like FitzGerald and Lorentz, even the most brilliant and creative among us might be suffering from our own hard-won and well-established assumptions, and we might soon need the vision of a brilliant young genius — perhaps a theorist with a clever set of equations, or perhaps an experimentalist with a clever new question and a clever measurement to answer it — to set us straight, and put us onto the right path.

A 100 TeV Proton-Proton Collider?

During the gap between the first run of the Large Hadron Collider [LHC], which ended in 2012 and included the discovery of the Higgs particle (and the exclusion of quite a few other things), and its second run, which starts a year from now, there’s been a lot of talk about the future direction for particle physics. By far the most prominent option, both in China and in Europe, involves the long-term possibility of a (roughly) 100 TeV proton-proton collider — that is, a particle accelerator like the LHC, but with 5 to 15 times more energy per collision.

Do we need such a machine? Continue reading

Could the Higgs Decay to New Z-like Particles?

Today I’m continuing with my series, begun last Tuesday (click here for more details on the project), on the possibility that the Higgs particle discovered 18 months ago might decay in unexpected ways.

I’ve finished an article describing how we can, with current and with future Large Hadron Collider [LHC] data, look for a Higgs particle decaying to two new spin one particles, somewhat similar to the Z particle, but with smaller mass and much weaker interactions with ordinary matter.  [For decays to spin zero particles, click here.] Just using existing published plots on LHC events with two lepton/anti-lepton pairs, my colleagues and I, in our recent paper, were able to put strong limits on this scenario: for certain masses, decays to the new particles can occur in at most one in a few thousand Higgs particles.  The ATLAS and CMS experiments could certainly do better, perhaps even to the point of making a discovery with existing data, if this process is occurring in nature.

The Higgs could decay to two new spin-one particles, here labelled ZD, which in turn could each produce a lepton/anti-lepton pair.  The resulting signature would be spectacular, but neither ATLAS nor CMS has done a optimizal search for this signal covering the full allowed ZD mass range.

The Higgs could decay to two new spin-one particles, here labelled ZD, which in turn could each produce a lepton/anti-lepton pair (e = electron, μ = muon). The resulting signature would be spectacular, but neither ATLAS nor CMS has yet published an optimal search for this signal across the full allowed ZD mass range.

You might wonder how particle physicists could have missed a particle with a mass lower than that of the Z particle; wouldn’t we already have observed it? A clue as to how this can occur: it took much longer to discover the muon neutrino than the muon, even though the neutrino has a much lower mass. Similarly, it took much longer to discover the Higgs particle than the top quark, even though the Higgs has a lower mass. Why did this happen?

It happened because muon neutrinos interact much more weakly with ordinary matter than do muons, and are therefore much harder to produce, measure and study than are muons. Something similar is true of the Higgs particle compared to the top quark; although the top quark is nearly 50% heavier than the Higgs, the Large Hadron Collider [LHC] produces 20 times as many top quarks and anti-quarks as Higgs particles, and the signature of a top quark is usually more distinctive. So new low-mass particles to which the Higgs particle can perhaps decay could easily have been missed, if they interact much more weakly with ordinary matter than do the Z particle, top quark, bottom quark, muon, etc.

The muon neutrino was discovered not because these neutrinos were directly produced in collisions of ordinary matter but rather because muons were first produced, and these then decayed to muon neutrinos (plus an electron and an electron anti-neutrino).  Similarly, new particles may be discovered not because we produce them directly in ordinary matter collisions, but because, as in the above figure, we first produce a Higgs particle in proton-proton collisions at the LHC, and the Higgs may then in turn decay to them.

I should emphasize that direct searches for these types of new particles are taking place, using both old and new data from a variety of particle physics machines (here’s one example.) But it is often the case that these direct searches are not powerful enough to find the new particles, at least not soon, and therefore they may first show up in unexpected exotic decays of the Higgs… especially since the LHC has already produced a million Higgs particles, most of them at the ATLAS and CMS experiments, with a smaller fraction at LHCb.

I hope that some ATLAS and CMS experimenters are looking for this signal… and that we’ll hear results at the upcoming Moriond conference.

X-Rays From Dark Matter? A Little Hint For You To Enjoy

Well it’s not much to write home about, and I’m not going to write about it in detail right now, but the Resonaances blog has done so (and he’s asking for your traffic, so please click):

A team of six astronomers reports that when they examine the light (more specifically, the X-rays) coming from clusters of galaxies around the sky, and account for all the X-ray emission lines [light emitted in extremely narrow bands by atoms or their nuclei] they know about, there’s an excess of photons [particles of light] with energy E=(3.55-3.57)+/-0.03 keV, a “weak unidentified emission line”, that can’t easily be explained.  What could it be?

[A keV is 1000 eV; an eV is an electron-volt, an amount of energy typical of chemical reactions.  Note that physicists and astronomers commonly use the word "light" to refer not just to "visible light" -- the light you can see -- but to all electromagnetic waves, no matter what their frequency. ]

Well first: is this emission line really there?  The astronomers claim to detect it in several ways, but “the detection is at the limit of the current instrument capabilities and subject to significant modeling uncertainties” — in other words, it requires some squinting — so they are cautious in their statements.

Second: if it’s really there, what’s it due to?  Well, the most exciting and least likely possibility is that it’s from dark matter particles decaying to a photon with the above-mentioned energy plus a second, unobserved, particle — perhaps a neutrino, perhaps something else.   I’ll let Resonaances explain the sterile neutrino hypothesis, in which the dark matter particles are kind of like neutrinos — they’re fermions, like neutrinos, and they are connected to neutrinos in some way, though they aren’t as directly affected by the weak nuclear force.

But before you get excited, note that the authors state: “However, based on the cluster masses and distances, the line in Perseus is much brighter than expected in this model, significantly deviating from other subsamples.”  In other words: don’t get excited, because something very funny is going on in the Perseus cluster, and until that’s understood, the data can’t be said to be particularly consistent with a dark matter hypothesis.

One more anomaly — one more hint of dark matter — to put on the pile of weak and largely unrelated hints that we’ve already got!  I don’t suggest losing sleep over it… at least not until it’s confirmed by other groups and the Perseus cluster’s odd emissions are explained.